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Time-dependent deformation of
polypropylene in response to different stress

histories
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Tensile strains have been determined as a function of time for polypropylene during (a) two-step loading, (b)
creep recovery following removal of a load, and (c) intermittent load application. Data are presented at 23°C
for specimens of different physical age, for different stress levels in the non-linear range and various
durations of loading. The results are compared with predictions based on a pseudo-linear model. They have
also been analysed using a modified superposition procedure that allows for changes in mean retardation
time due both to physical ageing and to the application and removal of loads. This analysis has provided
useful information on the variations of molecular mobility during the different loading histories. The
functions and associated parameters used in the analyses could also form the basis of a method for
presenting design data on plastics. Crown Copyright © 1997 Published by Elsevier Science Ltd.
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INTRODUCTION

Boltzmann’s Superposition Principle can be used to
predict the deformation of polymenc solids subjected to
arbitrary time- dependent loads'. The success of this
procedure requires that the viscoelastic behaviour is
linear, implying that the applied stresses are sufficiently
small to have a negligible effect on material properties. It
also requires that no significant physical ageing and
associated increase in retardation times occurs during the
timescale of loading®. Modifications to Boltzmann’s
Principle have been proposed to account for the effects of
elevated stresses! and of physical ageing®”. However
they have not provided accurate predictions of the strain-
recovery following creep at high stress or of the non-
linear response to more complex stress histories®.

In this article we describe studies of the non-linear,
time-dependent strain in polypropylene at 23°C during
(a) the two-step application of stresses, (b) creep recovery
following removal of a stress and (c) the reapplication of
a stress during creep recovery (intermittent loading). The
experimental data have been analysed by a modified
superposition procedure that allows for variations in
mean retardation time due both to spontaneous physical
ageing and to the application and removal of stresses.
This approach represents an extens1on to our model for
physical ageing and non-linear creep’ '°, and is aimed at
providing functions that could be employed in the design
of plastic components subjected to time-varying loads.

SUMMARY OF CREEP MODEL

For a polymeric specimen subjected to a constant
uniaxial tensile stress o, the creep behaviour may be

* To whom correspondence should be addressed

specified by the compliance function, D(t) = e€(¢)/o,
where €(7) is the time-dependent strain. Values of D(¢)
are found to decrease with increasing physical age of the
material, represented by the elapsed time ¢, between
cooling the specimen from a high temperature (at which
the polymer structure is at equilibrium) and the start of
the creep test’. At stress levels below about 3 MPa, and
for a given age ., €(¢) is usually proportional to o for all
times ¢ and the linear creep behaviour may be
characterized by a single D(¢) vs. log ¢ curve. At higher
stresses an increase of D(r) with o marks the onset of
non-linear creep behaviour.

Various empirical functions have provided an accurate
representation of the time-dependence of D(1) for several
glassy and semicrystalline plastlcs In previous
investigations of polypropylene”?, and in the study
reported here, we employed a stretched-exponential
function of the form

D(t):D0+AD[l—exp(—(J;%)m)] ()

where Dy is the compliance in the limit ¢ = 0, AD is the
retardation magnitude, 7(¢) a mean retardation time for
the creep process, and m a parameter (0 < m < 1) that
characterizes the width of the retardation time distribu-
tion. The integral allows for changes in 7(x) due to
physical ageing for all times () during the creep from 0
to ¢

For several glassy and semicrystalline polymers
1nclud1ng polypropylene 10 a gradual decrease in D,
with increasing age . has been successfully modelled.
Within experimental error, no systematic variations of
Dy with o are usually observed, and the value of m is
essentially independent of ¢, and o°
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The principal effect of increasing z, (see Figure 1) is to
shift the short-term region (¢ < t,) of the D(¢) — log¢
curve to longer times. This reflects an increase in the
initial retardation time 7(0) at constant m. The decrease
in slope of the compliance curve for ¢ > t, (Figure 1) is
then ascribed to an increase in 7(¢) due to progressive
ageing that accompanies the creep. This effect is allowed
for by the integral in equation (1) assuming that Dy and
m are independent of creep time ¢.

With increasing stress (Figure 2), for a given age f., the
short-term region of the compliance curve shifts to
shorter times. This effect is opposite to that produced by
physical ageing, and corresponds to a decrease in 7(0),
although opinions differ as to whether it can be described
as a stress-induced deageing of the material?®'"12, The
effects of progressive ageing during the creep are seen for
stresses up to 9MPa but at higher stresses they are
obscured by an upturn in the creep curve at longer times,
believed to mark the onset of a non-recoverable flow
process'”.

The theoretical fits shown to the creep curves in
Figures 1 and 2 were obtained using equation (1),
allowing for non-recoverable compliance contributions
at 11.8 and 14.8 MPa, and the equation'’

() = (42 4+ C2 )0 )

which describes the variation of 7 for various polymers
over wide ranges of ¢, and ¢. The subscript ¢ is added to
indicate that values for the parameters 4, u, C and y/
may each depend on stress level. These values usually
decrease with increasing stress with C — 4 — 4, and
p — pu — o in the limit o — 0. Table 1 lists values of the
parameters derived from fitting equations (1) and (2) to
the data in Figure 2, taking’ AD =5.3 GPa~! and
assuming that p' = p.

The variation of retardation time with ¢, stress and
creep time is conveniently illustrated in Figure 3 by plots
of logr(¢) vs. log(z, +¢). The linear dependence of
log7(0) on log?, (exemplified by the results for
o =296MPa) is consistent with the first term in
brackets in equation (2), the values of g and 4
corresponding to the respective slopes and intercepts
(at logt, = 0) of such plots. Also shown is the abrupt
decrease in 7 and its subsequent increase with creep time
(due to physical ageing) after applying various stresses at
t, = 24 h. Values of ¢/ and C in equation (2) correspond
to the slopes and intercepts, respectively, of the long-time
asymptotes to these curves.

MODIFIED SUPERPOSITION ANALYSIS
Two-step load increase

It is convenient to consider first the response to a two-
step loading in which a stress oy is applied at t = 0 and an
additional stress o, at t = t| (see Figure 4a). For times
t > 1, the strain €(¢) is written as

€(t) = eo(t) + &1 () 3)

where €)(#) and € (¢) are the strain contributions due
to stresses o, and o, respectively, each of which
operates indefinitely. On the basis of equations (1)
and (3) we now write (assuming that Dy, AD and m do
not vary significantly with stress or with ¢ and that

p=u)
e(t) =0o{Dy + AD[1 — exp(—(lo + I;(1))")]}
+01{Dg + AD[1 —exp(—(L()™)]} (4

25 T T T

Creep compliance curves

o=2.96Mpa

D(t) (GPa™")

i 1 1 1

05 1 . 1
10° 10' 10? 10°

104 108 108 107 108
t (s)

Figure 1 Tensile creep compliance curves for a stress of 2.96 MPa at different age stages t.. Theoretical curves (—) were obtained by fitting equations

(1) and (2) to the data
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Figure 2 Tensile creep complieance curves for ¢, = 24 h and different stress levels 0. The theoretical curves (—) were derived by fitting equations (1)
and (2) to the data, taking AD = 5.3GPa ' and yielding values for the other parameters given in Table !

Table 1 Values of parameters obtained from modelling of creep
curves

Stress (MPa)

2.96 6.20 8.97 118 14.8
Dy (GPa™) 0.65 0.62 0.59 0.62 0.63
m 0.21 0.21 0.20 0.20 0.20
A (" 56485 22890 14100 7560 2356
i 0.71 0.63 0.54 0.47 0.40
C (s 30000 30000 34000 28000 29900
where
h du
n=| (5)
2 0.5
0o (42" + CPuP)y;
and
' du
11 t) = J —_— 6
0= (6)

The constant I, can be evaluated, using equation (5),
from the parameters obtained by modelling the creep
data during the first loading step. The integral I,(¢)
allows for changes in 7(¢) for ¢ > ¢, associated with
spontaneous ageing and with the load increase at #;. It
will be noted that I;(¢) governs the behaviour of both
€o() and €, (¢) and can be determined (see Data analysis)
using equation (4) from the measured €(¢) and the known
value of I,. Instantaneous values of 7(r) can then be
obtained from the relation

1 dIi(t) L(t)dlogl(1) 7)

(t)  dt t dlogt

which follows from equation (6). Details will be given
below of the procedures used to determine 7(¢) (see Data

analysis) and of the function developed for describing its
time-dependence, and hence the time-dependence of €(z),
during the second loading phase (see Two-step load
increase).

Recovery following load removal

In this case (Figure 4b) a stress o is applied at ¢t = 0 and
removed at ¢ = t;. The stress removal is equivalent to
applying a negative stress of equal magnitude o whilst
preserving the original applied stress. We then have
09 =0, oy = —o and the strain components ¢,{r) and
€;(t) are, respectively, positive and negative. Using
equations (1) and (3) we now obtain for ¢ > 1,

e(t) = sADlexp(—(1,(2))") — exp(—(lo + I, ())™)] (8)

where Iy and I,(f) are given by equations (5) and (6)
respectively.

Equation (8) may now be used to calculate values of
I,(t) during the recovery phase from the known I and
measured €(z), and the time-dependence of 7(f) subse-
quently evaluated using (7). A function used to model the
variation of 7(¢) during the recovery will be discussed in
the section on Creep recovery.

Intermittent loading

As illustrated in Figure 4c¢, we now consider the
response to a stress o that is first applied at =0,
removed at ¢ = ¢, and subsequently reapplied at ¢ = ¢,.
This loading history is equivalent to applying stresses
0y =o0, 0p=—0c and o, =0 at times t =0, ¢; and ¢,
respectively. Superposition of the resulting strain comp-
nents gives for t > 1,

e(t) = e(t) + (1) + e2(2) 9)

where €(¢) and €,(t) have positive values and € () is
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Figure 3 Double-logarithmic plots showing the variation of 7 with age ¢, and creep time f. (-O-), values of 7(0) at ¢t = 0 for different ¢, obtained from
analyses of short-term creep data at 2.96 MPa. (—) Variations of r(z) with t during long-term creep calculated from the data in Figure 2. These curves

correspond to equation (2) with values of parameters from Table 1

negative. From equations (1) and (9) we have
e(t) =o{Dy + AD[1 — exp(— (I + I) + L(1))")]}
— 0{Dy + AD[1 — exp(— (I, + L(1))")}}

+ a{Dy + AD[1 — exp(—(L())")]} (10)
where I, is given by equation (5) with oy = o,
I = J: % (11)
and
B = [ 5 (12)

The constant I,[=/,(¢;)] may be evaluated using
equation (8) from the known I, and the residual strain
during the recovery at the instant of reloading. Values of
L(t) may then be obtained from equation (10) and the
measured €(¢) for ¢ > £,. From equation (12) it follows
that the corresponding 7(¢) values during the second
loading period can be estimated using
1 _dn(t) _ h(r)dlogh(r) (13)
() dt ¢ dlogt
The function used to model the time-dependence of 7(¢)
for ¢ > t, will be considered in the section on Intermittent
loading.

PSEUDO-LINEAR MODEL

For linear behaviour, and in the absence of ageing, the
magnitude of each strain component will be proportional
to the corresponding stress component at a given time
after its application (and independent of other stress
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components). In the case of a two-step load increase, this
is represented by

&) = Leglt — 1) (14)
0
At elevated stresses, in the non-linear range, it will be
instructive to compare the measured strains for ¢ > ¢
with those predicted assuming the validity of equations
(3) and (14). The predicted strains for ¢ > ¢; are thus
obtained using, in place of equation (4),

e(t) =0o{Do + AD[1 — exp(—(Io(1))™)]}
+o{Do + AD[1 —exp(—=(I1(N)™M]} (4a)
where
N du
bl = JO (422 + Cu)s 1)
and

I = Jt du (16)
! 4 (Azl%# + CZ(u — Z1)2u)g;)5
The values of 4, 1 and C in equations (15) and (16) are
those obtained for stress o, from fitting equations (1) and
(2) to the creep data for t < ¢;.
In the case of creep recovery, the pseudo-linear
approximation assumes that

() = —eo(t—11) (17)

and, from equation (3), the predicted strains for > ¢
are obtained using

e(t) = cADfexp(— (L ())™) —exp(=(f())™)]  (8a)

where I(#) and I}(¢) are given by equations (15) and (16),
respectively, with oy = 0.
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Figure 4 Schematic illustration of strain response to different stress histories. (a) Two-step load increase; (b) creep and subsequent recovery following

load removal; (c) intermittent load application

For intermittent loading, the pseudo-linear scheme
assumes the validity of equations (9) and (17) together
with

(1) = €t — 1) (18)
The strains for ¢ > t, are then predicted using the equation

€(t) = o{Dg + AD[1 — exp(—(L5(1))™)]}
— o{Dy + ADIl —exp(—(11())")]}
+0{Do+ AD[1 —exp(—(L(1))")]}  (10a)

where I)(¢) and I;(7) are again given by equations (15)
and (16) with oy = o and

B = [ du

o (A + CHu— 1))

(19)

The pseudo-linear scheme cannot be generally valid since
it implies that changes in 7(¢) due to the application of 7,
and o, are negligible and makes no allowance for the
effects of ageing during the periods 0 — ¢; and 0 — #, on
the expressions for 7,(f) and I,(¢) respectively.

If the applied stresses are sufficiently small to have a
negligible influence on 7(¢) and, in addition, ¢ is small
compared with £, so that changes in age state during the
loading periods become negligible, then equations (15),
(16) and (19) reduce to

OB (20)
, t—t

L) = T(O; (21)
Nl

Lty = ;@72 (22)

respectively, where 7{0) = A¢4. Substitution of these
equations, into equations (4a), (8a) or (10a) yields the
relations for linear viscoelasticity, usually derived with-
out consideration for spontaneous ageing effects!.

EXPERIMENTAL METHODS AND DATA
ANALYSIS

Material
The polypropylene (Royalite, Propylex homopolymer)
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was obtained in the form of a 9 mm thick sheet from VT
Plastics (UK). Rectangular test pieces were machined
from this sheet having nominal dimensions
180 x 10 x 4mm. To stabilize their crystallinity with
respect to subsequent thermal treatments, the specimens
were first annealed at 130°C for 4h and then cooled
slowly to room temperature. The density of the annealed
material was determined by hydrostatic weighing in
distilled water at 23°C and found to be 907kgm .
This 1c‘}ensity corresponds to a calculated crystallinity of
61% .

Prior to the initial load application, the specimens
were heated to 80°C for 30 min to erase previous effects
of ageing, quenched in water at 23°C, and stored at this
temperature for different times f..

Strain and compliance determination

Tensile strains, e,(2) = Al/l,, were determined from
the measured time-dependent extensions A/ of specimens
with unstrained gauge length /,. Each specimen was held
vertically between a fixed lower clamp and an upper
clamp through which loads were applied via a pivoted
lever arm with a 5/1 ratio advantage. Two calibrated
extensometers of gauge length 50 mm were located on
opposite faces of the specimen. The extensometers each
comprised an inductive displacement transducer that
contacted the specimen via two knife edges'®. One of the
knife edges was attached to the core of the transducer
and the other to its body. A data logger was employed to
sample the amplified output voltage from each extens-
ometer at specified time intervals. The first recordings
were made at 1s after the application or removal of a
load. At the end of each loading or unloading period, the
data were dumped to a disc for storage and subsequent
analysis. All measurements were made at 23.0 £0.2°C
by locating the specimens in temperature-controlled
chambers.

Corrections to the measured strains €, (¢) were made
to account for the small variations in cross-sectional
area, and hence true stress, that accompany the length
changes at constant load. The corrected strains e(¢) and
derived compliances D() are related by

e(t) = em(1)[1 — 2ven ()] = D(1)on (23)

where o, is the calculated stress per unit unstrained
cross-sectional area and a value of (.37 was taken for
Poisson’s ratio v. For a specimen of given age, the strains
and compliances were usually reproducible to within
2%.

Data analysis

Values of the parameters Dy, m, A, p and C are
required to calculate the strains for any loading sequence
according to the modified superposition procedure or
pseudo-linear model. Taking AD = 5.3 GPa™!, Dy, m
and 7(0) were first obtained by fitting equation (1) to the
initial parts of the creep curves'® spanning the time range
t < 0.2¢,. Noting that the effective age of a testpiece does
not change significantly over this period, the integral of
equation (1) then becomes ¢/7(0) where 7(0) = Az#;. 4
and p were subsequently derived from the respective
intercept and slope of a plot of log7(0) vs. logt,. For
creep times in excess of the short-term limit (0.2z.) the
effective age of the testpiece progressively increases and
the data have to be modelled in terms of equation (1)
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with 7(u) given by equation (2). The only unknown
variable in these equations, C, was obtained by a linear
least-squares fit to the data'” noting that the integral of
equation (1) has to be solved numerically.

Within experimental error, Dy and m showed no
systematic variations with stress whereas 4, y and C
were found to be stress dependent although independent
of elapsed time, f.. By using the optimum values of these
parameters for each of the loading sequences, allowance
was made for the lack of exact repeatability of
experimental results.

Values for the unknown integral 7, (¢) in equations (4)
and (8) were obtained by a linear least-squares fit of these
functions to experimental data using appropriate values
of Dy, m, A, i and C. The time dependence of the mean
retardation time 7(f) was obtained by differentiating a
polynomial fit'® to the plot of log I, (t) vs. log ¢ following
equation (7). Similar procedures were employed to
determine /,(¢) in equation (10) and the corresponding
7(r) according to equation (13). The modelling of 7(¢) is
discussed in the following section.

RESULTS AND DISCUSSION
Two-step load increase

Figure 5 shows the measured strains as a function of
logt in a two-step loading test on a specimen of age
t. = 24h. The specimen was first subjected to a stress
oo =62MPa at r=0 and an additional stress of
o, = 5.7 MPa was then applied at 1, = 6 h. For compar-
ison, creep strains are also presented for another
specimen of age f, =24h subjected to a stress of
11.9MPa at ¢ = 0. For times greater than about 30h,
the effects of the second loading step become dominant
and the strains produced by the different stress histories
are seen to converge.

During the second loading stage, the observed
strains are much larger than those predicted by the
pseudo-linear scheme (Figure 5). This result is ascribed
to a decrease in 7 due to the second load increase,
an effect which serves to increase both €;(#) and ¢ (%)
but is not accounted for by the pseudo-linear
approximation.

Figure 6 shows a plot of log7(f) vs. log(z. +1)
calculated from the strain data of Figure 5 according to
the modified superposition procedure [equation (7)]. The
application of o, is seen to produce an abrupt decrease in
7(t) to values somewhat lower than those calculated
from the creep data at 11.9 MPa. Subsequently the 7(¢)
values increase, due to a reactivation of ageing, to a level
close to that derived for 11.9 MPa. The retardation time
thus appears to depend on the effective age of the
material and the total instantaneous applied stress. It is
also found that the increase in 7(¢) after the second load
application can be described to a good approximation by
the power law

IOgT(t) = lOng +k1(t — f])m‘ (24)

where 7y is the mean retardation time at #; immediately
following the application of oy, and k; and m,; are
constants. Table 2 lists the values of the parameters
obtained from the data in Figure 6 and from similar
results for different ¢; and ;. On the basis of equation
(24), the time-dependence of (r) for ¢ > #; has been
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modelled using equations (4), (5) and (6) with Creep recovery
, . " The recovery data will be illustrated by plots of the
7(u) = 100 +h=0)") (25) residual strain vs. log(z—¢;) rather than logs. By
_ effectively expanding the timescale at short recovery
Figure 5 illustrates the good agreement between the times, this allows the proposed recovery functions to be
calculated and measured strains. more accurately assessed in this region.
45 T T T T T T
40 ¥ Strain response to two-step loading
te=24h , 0p=6.2Mpa , ¢1=5.7Mpa
35 Madified
: superposition
analysis
30 | -
s 25 | e .
- » *~—_ Pseudo-linear
x 7 prediction
= 20} ’ -
w
15 - Creep at 11.9MPa ]
1.0 -
05 Creep at 6.2MPa N
0 1 1 1 1 1 |
10° 10! 102 10® 104 108 108 107

t (s)

Figure 5 (A) Time-dependence of the strain during a two-step loading test with ¢z, = 24h, oy = 6.2MPa, o; = 5.7MPa and ¢, = 6h. (O) Strains
determined during a single-creep test for t, = 24h and o = 11.9 MPa. (- - -) Predicted strains during the second loading stage according to equation
(4a), with parameters for 6.2 MPa from Table 1. (—) Calculated strains obtained by fitting equations (1) and (2) to data in the first loading stage and
using equations (4) and (25) in the second stage. Using equations (1) and (2), the parameters obtained for 6.2 MPa are given in Table I and, for
11.9MPa, we obtained m = 0.20, Dy = 0.62GPa™', 4 = 6837s' *, C =20000s'# and p = ;' = 0.47. Using equations (4) and (5), values of the
parameters were taken from Table I for 6.2 MPa. The parameters used with equation (25) are listed in Table 2

9 T T
8 I —
......................................................... GZOMPa
1
=
[
o ' 7]
o]
~ T1OMPa s
6 b \ -
ty=6h T variations for two—step loading
te=24h , 0o=6.2MPa , 0=5.7MPa
5 i 1
48 5.0 52 54

Log (te+t) (s)

Figure 6 (—) Calculated variation of 7(¢) with ¢ from the experimental data in Figure 5 during the first stage (1) and second stage (2) of the two-step
loading test. In stage 1, 7(¢) values are given by equation (2) with parameters from Table 1. In stage 2, 7(¢) calculated from the modified superposition
equations as described in the text. (—O—). Asin Figure 3. (- - -) Variation of 7(¢) during long-term creep at the specified stresses according to equation (2)
with parameters from Table I and Figure 5. (A) 7y value at ¢t = ¢| from Table 2
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Table 2 Values of parameters describing the variation of 7(#) during
the second stage of two-step loading tests (¢, = 24 h)

Pseudo-linear model. Figures 7 and 8 show creep and
recovery curves at a stress close to 3 MPa that is just
within the non-linear range. When the duration of the

%o a1 . . . .
(MPa) (MPa) t () log 7,(s) ki 57™) m test is short compared with ¢, (Figure 7) the pseudo-linear
62 570 1633 585 0.061 0.231 scheme provides a good description of the behaviour.
6.2 570 21600 599 0022 0302 This is consistent with the fact that equation (15) then
6.2 2.85 3774 6.70 0.014 0.316 reduces to equation (20) and, similarly, equation (16)
reduces to equation (21). Hence the behaviour conforms
0.4 T I T
Creep and recovery
0=2.95Mpa , t,=24h , t;=1h
k=
< -
T
- -
T Sooece .
- -0 -
0.1 t“‘m Pseudo-linear
~e Co, prediction
o
Rk
0 i ) ) ]
10° 10' 102 10 104

t, t-4y (s)

Figure 7 Low-stress creep (®) and recovery (O) data for ¢, = 24h, 0 = 2.95MPa and 1, = 3687 s. (—) Fit of equations (1) and (2) to the creep data.
(- - -) Predicted recovery using equation (8a). Values for parameters as follows: Dy = 0.65 GPa™', AD=53GPa”', m=021, 4 = 50100s'*,

C=30000s""*, p=y =0.71

0.7 T T T

Creep and recovery
0.6

05

o=2.96Mpa , t,=24h , t1=481h

% 0.4 P -1
x Modified superposition
= 03 analysis
] . N
0.2 N
Pseudo-linear
~
prediction ‘\
~
0.1 [~ \\
~
0 i | | 1 1 |
10° 10? 10? 103 10* 108 108 107
t, t=ty (s)

Figure 8 Low-stress creep (®) and recovery (O) data for t, = 24h, 0 = 2.96 MPa and 1, = 481 h. (—) Fit of equations (1) and (2) to the creep data
and calculated recovery curve using equations (8) and (26) with values of parameters in Tables I and 3. (- - -) Predicted recovery using equation (8a)

with values of parameters given in Table I
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closely with the equations of linear viscoelasticity.
However for creep times ¢, much larger than ¢, then, as
shown in Figure 8, the observed strains during
the recovery are substantially larger than those
predicted by the pseudo-linear approximation. The
discrepancy is attributed to physical ageing that
occurs during the creep, as a result of which 7(#) values
during the recovery are higher than those in the early
stages of the creep. Thus the magnitude of the negative
€1(t) component is smaller than that predicted by
equation (17).

At elevated stresses (see Figure 9) the measured strains
at long recovery times are again larger than those
predicted by the pseudo-linear model. However at short
recovery times (for t; small compared with t.) they are
significantly smaller than the predicted values (see also
Figure 12 below), suggesting a possible decrease in 7 on
unloading and consequent increase in the relative
magnitude of €; (7).

Modified superposition analysis. With the aid of
methods detailed in Data analysis, equations (7) and
(8) were employed to derive 7(f) from the measured
strains during creep recovery for several combinations
of o, 1. and ¢;. Some results of these calculations are
included in Figure 10 for the case o= 11.8 MPa,
t; = 1 h and different age states t.. Figure 11 shows simi-
lar data for a stress of 8.97 MPa, f, = 24 h and various
creep durations ¢;. It will be observed that the retarda-
tion time exhibits an abrupt decrease upon load removal,
and then increases quite rapidly to a level close to that
found for ¢ — 0 from low-stress creep data. In support
of the latter observation, Figure 11 shows that retarda-
tion times determined from low-stress creep measure-
ments after reloading the specimens during recovery lie
close to the extrapolated values from low-stress data
prior to the application of an elevated stress. The small
discrepancies between the calculated +(¢) from the
recovery data and the retardation times for the reloaded

specimens could reflect inaccuracies in the form of the
creep function over wide time ranges.

The increase of 7(¢) over 4-5 decades of recovery time
can be closely described by the power-law function

log T(Z) = IOg Tie + kr(t - tl)mr (26)

where 7, is the initial retardation time governing the
recovery at the instant of unloading (¢ = ¢) and &, and
m;, are constants. The derived values for 7., k, and m, are
shown in Table 3 and were used to recalculate the
residual strains using equations (8), (5), (6) and (26).
Figures 8 and 9 exemplify the excellent agreement
typically observed between the experimental and
calculated strains.

Further work is required to develop functions that
relate 7, k, and m, to the variables o, ¢, and ¢, and that
may serve as a basis for predicting the recovery
behaviour. Some comments can, however, be made on
the significance of, and possible method for estimating,
these parameters.

Regarding the value of log 7., this will depend on the
retardation time 7. during the creep at 1 = t; and the
decrease Alogm = logm,, —logT, due to unloading.
According to our model, this decrease is produced by the
negative (compressive) component of the deconvoluted
stress and could reflect a transient structural change in
the material (increase in free volume or conformational
entropy). From studies of PVC, we have found that the
retardation time for short-term creep under uniaxial
compression decreases with increasing stress, the magni-
tude of this decrease being around 40% of that observed
under tension’. From the data in Tables I and 3 we
estimate that the magnitude of Alogm; is about 60% of
the decrease in log 7 produced by the initial loading, or
about 40% of the decrease produced by an additional
load of the same magnitude. Based on these observa-
tions, it appears that close estimates of log ;. could be
obtained from a combined analysis of tensile and
compressive creep data.
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Figure 9 Creep (®) and recovery (O) data for f, = 24h, 0 = 11.8 MPa and | = 3600s. Theoretical curves (—) and (- - -) derived as in Figure 8
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Figure 10 (—) Calculated variation of 7(¢) with ¢ during the creep (1) and recovery (2) for o = 11.8 MPa, #; ~ | h and different ,. 7(¢) values during
creep are given by equation (2) with parameters in Table 1. During the recovery, 7(¢) calculated by the modified superposition procedure described in

the text. (—-O—) As in Figure 3. (A) 1, values at ¢ = t; from Table 3
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Figure 11 (—) Variations of 7(¢) with ¢ during creep and recovery for o = 8.97 MPa, . = 24h and different creep durations ¢,. Calculations and
symbols (~=O-), (&) as in Figure 10. (®) 7 values determined during recovery from short-term creep data after reapplying a stress of 2.96 MPa

With regard to the value of k£, and m,, we note that
equation (26) could reflect a progressive decrease in free
volume or conformational entropy during the recovery
since log 7(¢) should be inversely proportional to each of
these structural variables'. The parameter k, will then
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characterize the rate of the structural recovery and
depend on the magnitude and some time constant for the
structural process. It will be evident from Table 3 that
trends in the value of k, with varying o, ¢, and ¢,
respectively, are opposite to the trends in log 7. This
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suggests that related empirical relationships could be
developed for modelling variations in 7y, k; and m,.

Intermittent loading

Figure 12 presents the measured strains produced by
intermittent loading for o =9.02MPa, ¢, =24h,
t; = 1.09h and ¢, = 2.09h. During the recovery stage
(ty > t > 1)), the discrepancies between the observed
strains and those predicted by the pseudo-linear scheme
are again indicative of an abrupt decrease and

Table 3 Values of parameters describing the variation of 7() during
creep recovery

Stress
(MPa) . (h) 7 (s) logr, (s) ke (sT™) m;
2.96 24 1.731 x 10 8.917 0.088 0.105
6.20 24 3760 6.964 0.104 0.224
24 21330 7.142 0.050 0.259
8.97 7 3700 5.502 0.362 0.167
24 1822 5.778 0.271 0.198
24 3600 6.091 0.203 0.211
24 21393 6.374 0.106 0.235
24 28 800 6.582 0.076 0.253
24 85181 6.862 0.028 0.313
24 260246 6.989 0.024 0.303
72 3650 5.945 0.329 0.164
11.8 7 3600 4.687 0.641 0.145
24 1800 4.921 0.604 0.148
24 3600 4.992 0.514 0.153
24 28 800 5.240 0.393 0.160
72 3900 5.177 0.477 0.157
14.8 7 2160 3.154 1.450 0.102
24 2045 3.307 1.389 0.110
72 2160 3.567 1.293 0.104

subsequent increase in 7(¢) following the load removal
at r;. The retardation times calculated with the aid of
equation (7) are included in Figure 13, and it is seen
(Figure 12) that the residual strains during the recovery
can again be accurately modelled by the modified
superposition equations.

The initial strain increment due to the reloading at ¢, is
somewhat larger than that predicted by the pseudo linear
scheme (Figure 12). This is consistent with the observa-
tion in Figure 13 that the reloading occurs before 7(f) has
increased to the zero-stress level and produces a further
sharp decrease in 7(¢) to a value below that observed
after the first loading. For ¢ > t,, 7(¢) then increases quite
rapidly to the level calculated for continuous loading.
The latter increase can be described to a good
approximation by the function

log T(I) = 10g T + k2(t — t2)m2 (27)

where 7, is the mean retardation time at #, immediately
after the reloading and k, and m, are constants. Figure
12 shows the good agreement between the observed
strains for ¢ > t, and those calculated by the modified
superposition analysis with the aid of equations (26) and
7).

Similar results have been obtained from intermittent
loading tests in which the recovery period (#;, — #; = 1 h)
is short compared with the initial creep duration (f; = 6 h
and 24 h respectively). When the recovery period is long
compared with the creep duration it is expected that 7(z)
will increase to around the zero-stress level prior to the
reloading. Owing to the increase in effective age of the
material between 1= 0 and ¢ = t,, the 7(¢) value after
reloading should then be higher than that observed after
the initial loading. This would explain previous obser-
vations® that the strain increment produced by reloading
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Figure 12 Time-dependence of the strain during the initial creep (®) and recovery (O), and after reloading (A), for an intermittent load test with
o =9.02MPa, 1, = 24h, t; = 3910s and £, = 7515s. (- - -) Pseudo-linear predictions using equation (8a) for recovery and (10a) after reloading. (—)
Calculated strains using equations (1) and (2) for the initial creep, equation (8) for the recovery and equation (10) after reloading. Parameters as
follows: Dy = 0.62 GPa~', m=0.20,4=11517 sTE p=054,C= 340005s'7¥. Values of 7() in equations (6) and (11) calculated using equation
(26) with logr, = 5.621, k, =0.4105"™, m, = 0.146. Values of 7(u) in equation (12) calculated using equation (27) with logr, = 6.00,

ky = 03125 my =0.123
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